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microstructure models, densification
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The stability of closed pores in two and three dimensions has been discussed and it is
found that the stability of pores in two dimension can be determined mathematically from
their particle coordination number and dihedral angle; while those in three dimension can
be approximately determined by a spherical pore model. This model is set up by first
excluding the effect of interface tension, so the pore was supposed to be spherical, and
then the tensile stress arising from the interface tension was allowed to act on this
hypothesized spherical pore. On the basis of the spherical pore model, pore microstructure
models for real powder compacts were set up and the densification equations for the
intermediate and final stages of sintering were derived. The criterion for pore shrinkage,
and the effect of pore size distribution and green density were discussed according to the
derived equations. The densification equations for pressureless solid state sintering can be
easily extended to describe the densification behaviour during hot-pressing or
hot-isostatic-pressing. Densification characteristics in liquid state sintering were also
considered from the result of solid state sintering. © 7999 Kluwer Academic Publishers

1. Introduction boundaries are still isolated and no continuous grain
1.1. Sintering stages and existing solid boundary networks are formed. Most densification and

state sintering models and theories microstructure changes take place in this stage of sin-
1.1.1. About sintering stages tering.

For advanced ceramics, densification is the essential As pores become isolated and grain boundaries form
process for sintering, and full densification is a pre-a continuous network, the intermediate stage of sinter-
requisite for the achievement of their intrinsic proper-ing ends and the third or final stage of sintering starts.
ties. Densification in pressureless sintering is related tén the final stage of sintering, isolated pores are located
the system itself, and densification theory in pressureat grain boundaries (interfaces), or linear junctures of
less sintering has been a fundamental theme for sevhree grains or point junctures of four grains, and/or
eral decades [1-11]. Pressureless sintering can eithentrapped in grains. Density increases slightly but the
be liquid state sintering or solid state sintering wheremicrostructure develops (grains grow) very rapidly in
only solid phase(s) is present in the system during denthis stage of sintering.
sification. The present paper is mainly concerned with
solid state sintering.

According to Coble [12, 13], solid state sintering can 1. 1.2. Models for the initial stage
be divided into three stages. The first or initial stage of of sintering
sintering involves interface formation and neck growthBased on a similar two-sphere model numerous den-
between primary particles (the contact area between th&fication equations were developed by different au-
particles increases from zero (ideally point contact)) tathors [14—20] to describe the densification processes
a certain extent, and the neck growth will cease when ain the initial stage of pressureless sintering. The densi-
equilibrium configuration is reached. The initial stagefication equations were derived by supposing that the
of sintering, as indicated by Coble, involves no grainlinear shrinkage rate of a sintered compact is equal to
growth. the rate of approach of the centers of two spheres. In

The second or intermediate stage of sintering startghis way, material transport by surface diffusion, vapor-
when grain growth begins. During this stage of sinter-condensation, or volume diffusion from surface to the
ing, grain boundaries form extensively but pores areneck area were assumed to have no contributions to the
still connected with each other and form a continuousdensification, while those by viscous flow, grain bound-
pore network, i.e., pore channels exists, while the grairary diffusion and the volume diffusion from boundary
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to the neck area were considered to contribute. The taaon-existence of a linear relation between porosity and
tal shrinkage in this stage of sintering is very limited the logarithm of time in this stage of sintering.

[18, 19]. Adetailed summary of the sintering theoriesin A significant progress for characterizing the final
the initial stage of sintering can be found in the Exner’'sstage microstructure development has been made by
review paper [18]. Harmeret al. [28, 29]. A microstructure map was de-
veloped which mainly involves the relation between
the grain size and pore size, or more importantly, the
relation between the grain size and the relative den-

1.1.3. Model for the intermediate stage X : o .
sity. However, a direct densification equation was not

of sintering .
The sintering phenomena in this stage of sintering ar@vailable.
much more complicated because of the complexity of
the densification process itself and the interference from . .
grain and pore growth on densification, which leads’-7-5. Other theories for the solid stage
to difficulties in setting up an appropriate model de- ~of sintering _ o
scribing the process. In the early 60s, Coble [12, 13}N addition to 'ghe tradlthnal microstructure (diffusion)
put forward a microstructure model for materials trans-model for solid state sintering, there are some other
port (diffusion)—a tetrakaidecahedron with cylindrical Mmacro- or statistical sintering models being developed
pores located at each edge. With this model, a densifi30-32]. Inthe present author’s opinion, however, these
cation equation was derived and the relation betweefnodels are of limited significance as they involve some
the porosity remaining in the sintered body and theSelf-defined parameters which have no definite physical
sintering time was obtained. This model has been ac€aning, and a densification equation for solid state
cepted as the derived porosity-time relation fitted wellSintering is not available in these theories.
with the experimentally observed linear relationship be-
tween density and the logarithm of time.
After Coble’s model, only limited progress has been 1.1.6. Contributions of the different
made on modeling the intermediate stage of sintering sintering stages to densification
on a similar microstructure scale. Johnson [21] aftedtis obvious that most of theories are for the first stage of
Coble reported a similar revised model but with no ma-sintering based mostly on a two identical sphere model
jor variations. [18,19]. The densification contribution in the early
Coble’s model is oversimplified, as has been foundstage of sintering is very limited, and far from account-
by many researchers [18, 19]. In addition, the modeing for all the sintering process. Many experiments for
can not be used to explain several important sinteringhe sintering of very large metal sphere showed that
phenomena. The effect of agglomerates on densificdhe linear shrinkage was less than 10% [18, 19], and in
tion, for example, as has been pointed out in the lastact regularly at around 2—3%. For real ceramic pow-
two decades, is very significant for fine powders, andder compacts, grain growth (i.e., coarsening) will occur
Coble’s theory was unable to explain this. This is, mostduring heating so the densification contribution in this
probably, because the effect of interface tension, angtage is further decreased. The final stage of sintering
thus the thermodynamic stability of pores, was not congenerally starts at the relative densities>#0% and
sidered in his model. Experimentally, the linear relationso the most densification takes place in the interme-
between densities and the logarithm of time obtained byliate stage of sintering, and therefore, more attention
Coble under the assumption of a cubic grain growth lawshould be paid to this stage of sintering. Unfortunately,
is also true for sintering process such as hot-pressintjle model description and theoretical analysis for the
where very limited grain growth was observed [22—24],intermediate stage of sintering is much less than those
and furthermore, phenomenological fithess with the refor the early stage of sintering.
lation does not necessarily convey physical meanings
[18, 19, 25]. As has been found by Pejovnik and co-
workers [26], the process can be fitted to other forms1.2. The interaction between surface
of simple empirical equations [26, 27], if appropriate tension and interfacial tension
parameters were selected for the equations. A detailed.2. 1. The driving force for the densification
analysis about Coble’s model and his derivation of theThe densification process of a powder compact is
densification equations will be given in Section 5. accompanied by a decrease of the surface area and
the formation of interfaces, i.e., the surface tension
is the driving force for densification and the interface is

1.1.4. Theories for the final stage the resistance to densification. The whole driving force
of sintering IS:

Similar to the intermediate stage, there are no satis-

factory theories describing the densification process in AG = AGs+ AGj = ysdAs+ i dA - (1)

this stage of sintering. By making use of and slightly

modifying his microstructural model for sintering in whereAG, AGs andAG; are the changes of the total
the intermediate stage, Coble gave a similar relatiorfree energy, surface energy and the interface enetgy;
between porosity and time [12], which is far less sat-andy; are the surface and interface tension @g@nd
isfactory than for the intermediate stage because of thé; are the specific surface and interfacial areas.
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(a) (b) ()

Figure 1 Schematics of the formation of dihedral angle between two identical touching cylinders, (a) particles in touch, (b) neck formatiamQ
(c) equilibrium configurationg = ¢e.

1.2.2. Chemical potential for the neck close to the neck. However, this will probably not hap-
formation and mass transport pen, as the formation of undercutting, thermodynami-

Considering the two sphere model, neck formation becally according to Equations 3 an( Bicreases the free

tween two particles is driven by the differential chem- energy of the system and the spherical particles would

ical potential between the neck area and the particl&eep their spherical shape during neck formation.

surface. When the formation of interface area is not

considered at first, the chemical potentiajyn, or, the

driving force for the neck formation, according to the 1.2.3. Dihedral angle and the coordination

Gibbs-Kelvin relation, will be: number
Considering a simple example of two touching cylin-
Apn = ys8(1/pn — 1/r) (2)  ders of the same diameter with infinite length (Fig. 1).

The neck will grow during sintering, and the contact
where$2 is the atomic volumep, andr are the radii angle ¢) between the two adjacent surfaces of the two
of the neck and the particles. As the neck surface igylinders increases from zero till a constant valugof
concave judged from particles (circle center of neck iswhere the system reaches an equilibrium configuration,

out of particle),o, < 0. andge is theso-calleddihedral angle:
In addition to the neck formation process between
particles, there is the chemical potential for mass trans- COSpe/2 = vi/2ys (4)
port within a particle or between particles, and this
chemical potential, defined asy.c, is: This relation, though simple, is basic in explaining the
thermodynamics of pores in sintering [12, 13].
Ape = ysQ(L/r1i + 1/r5i) — (3/r2i + 1/r2i)] (3) As a pore is coordinated by particles, it is there-

fore surrounded by pore-particle surfaces and patrticle-
whererq;, riji andry;, ryji are the orthogonal princi- particle interfaces, so pore stability must be affected
pal radii within one particle at place ‘1' and place by the particle coordination number. This concept was
‘2’, or the orthogonal principal radii of two differ- first put forward by Kingery and Francois [33] and later
ent particlesr(; > r») for particle ‘1’ and particle ‘2.  developed by Lange [34] and Shi [35]. A critical parti-
To simplify the equation, let 21 =1/r1;+ 1/r35, and  cle coordination number for the stability of a pore can
2/ro=1/r5 + 1/r5, Equation 3 becomes: be given as discussed in the following sections of this

paper.

Ape = 2ysQ(1/r1 — 1/17) 3)

It can be seen from Equation 3, if there is a differ- 1.3. The relation between the grain
ence of the radius of curvature (the particle is not a growth and the densification
sphere), mass transport would take place from the areBraditionally grain growth (or coarsening) during sin-
of larger curvature (smaller curvature radii) to the areaering is regarded as an interference or impedance to
of smaller curvature (larger curvature area) till the parti-densification. By studying the relation between densi-
cle becomes a sphere (whekg=rqji =ry =ry;); and fication and grain size of some particle arrays, Lange
if two spheres of different radius (whergandr, are  [36, 37] suggested that grain growth via coarsening
the radii of them) are in contact, there will be the masscan continually drive sintering by reinitiating sinter-
transport between them from the smaller one to largeing when a metastable equilibrium configuration (or
one till the two particles become one sphere. This prodihedral angle) for the particle array is reached. By
cess has been generally related to particle coarseninghis means, Langet al. [34] gave an explanation for
Neck formation between two spheres is accompathe linear relation between densities and grain size for
nied by a change of the particle shape. Some authosintered alumina, which was found by Gupta [38] two
believed [20] that neck formation can be accomplishedlecades ago. The relation between densification and
only with mass transport from adjacent to the neck, andyrain growth will be discussed in the second paper of
therefore form aso-calledundercutting configuration this series [39].
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Figure 4 Schematics for the relation betwegnandr, (for details see
text).

Figure 2 A two dimensional pore surrounded hycylinders. so the relations among these parameters can be deter-
mined:

2. Pore stability—a spherical pore model .

2.1. Stability of a two dimensional pore = singz /n)
determined by mathematical analysis sin(% -3+ %)

The stability of a pore in two dimension was discussed

by Kingeryet al.[33], and Lange [34] further put for- \yhereg, is the dihedral angle and is the coordina-

ward the concept of the particle coordination number okiq, number for the pore. As the radius of the circum-

pores in three dimensions. A quantitative mathematicalriped circle changes, the free energy of the systems

“Tp 8)

analysis will be given as follows. will change, as can be described as
Fig. 2 shows a two dimensional pore surrounded by
n cylinders. The dihedral angle can also be established dG = nys- 2o dp; — Ny dr, 9)

between two touching surfaces, but the pore stability
is determined by both the dihedral angle and the parare 2 is the radian faced by every pore-particle
ticle coordination number for the pore. Fig. 3 is the g, t5.a. Dividing Equation 9 byrg, and combining
pore configuration under different particle coordinationEquaﬁOns 7 and 8 into the above équation:

numbers. Lepy, r, andn be the curvature radius of the

pore particle surface, the radius of its circumscribed 4G bo—m+ 2

circle and the coordination number respectively (see —— — ° n . sin Znys_ ny  (10)
Fig. 4), from Fig. 4 we have: drp  sin3(ge—7 + %) n

pr % Sina = sing x1p (5) S0, we have the following criterion for the pore stability

as for dG/drp, =0:

p=m/n (6) Ne = 27 /(7 — de) (11)

and If n=2r/(7 — ¢e) =Nc, pr =00, and the particle sur-

_ _ faceis aplane, the systemis at equilibriungis the crit-
a=n/2—¢p=n/2-(7/2—7/n+7/2-¢/2) ical coordination number for a two-dimensional pore in
=¢/2—n/24+7/n (7) aplane;ifn <ng, pr > 0, the particle surface is convex

(a) (b) ()
Figure 3 Schematics of the two dimensional pore configurationsp(&)0, n < n¢; (b) or =0, n=n¢ and (c)pr <0,Nn > ne.
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judged from the pore centerGddr, > 0, the free en- Pore Openings

ergy of the system willincrease as the pore grows (its ra-

diusrpincrease); ih > nc, or <0, the particle surface is ’
concave judged from the pore centers, aGddr, <0,

the free energy of the system will decrease as the pore

grow. The pore configurations of different valuesopf

at a given dihedral angle are schematically illustrated

in Fig. 3.

2.2. Stability of a three-dimensional pore
(the pore in space)

The stability problem of a three-dimensional pore (a
pore in space) is much more difficult to deal with be-

cause the pore in practice is not a sphere. To simplify
the problem, the curvature of the pore-particle surface
led by the dihedral angle and the coordination num-
ber is first to be ignored temporarily, i.e., at first the

effect of interface energy is not considered, so under

this hypothesis this could be assumed that 7, i.e.
yp ! ’ Figure 5 Schematics of the spherical pore microstructure modelin space

the pore was a Spgere and the PQre'part'C|e SurfaCﬁlith six openings on the pore surface (for the intermediate stage of
energy would be #Ar “ys, thus the driving stress for the  sintering).

pore shrinkages is:

Pore-Grain Surface

d(drr2y) 1 2y which connect to other pores, as shown in Fig. 5 as
05 = 2. 5= = (12) aschematic drawing of the model with six openings.
ar 4t Without the openings, the model put forward for the
intermediate stage of sintering can be directly applied

lo the final stage of sintering.

Deviations form the model are mainly in the cal-

culation of the surface energy as the real surface area
dn-1-2p-r) 1 ns Iy is certainly different from the spherical surface area.

oj = ar aer2 " 2n 72 (13)  The magnitude of the dewatlon depends on the_ shape

of the real pores. For the special case of a cubic pore

wherensis the coordination number of grains surround- (Particle coordination number of 6 and dihedral angle
ing the pore in space (three-dimensional coordinatior?f 90°), the surface area calculated from the cube is
number),| is the grain boundary length between two 18.8% smallc_ar than the cwcgmscnbed spher_e, but for a
particles which face to the pore center (here the porebigher or aslightly smaller dihedral angle at fixed coor-
particle surface is a part of the ‘sphere’ surface and thélination number, and a different coordination number
boundaries are arcs on the sphere surface with the sarifzan 6, the deviations will be less than this value.
edge length).

The two stresses are both perpendicular to the por
sphere’s surface but have opposite directions, so th
compressive stressyp, acting on the pore will be:

On this basis, supposing that the stregdor the pore
expansion resulted from the interface energy acts o
this hypothesized ‘sphere’, will approximately be:

3.2. The space coordination number
of a pore
The coordination number inthree dimensions (in space)
can be related to the size ratio between the pore and
(14) its surrounding particles. Let and D be the volume
equivalent diameters (diameter of a sphere of the same
pevolume as the concerned particle or pore) for a pore

The stability of pores in three dimensions now can . . . )
explained on the basis of the spherical model and Equa"d Particles, and defiri as the size ratio of pores to

tion 14 for the three-dimensional pores (closed pores)Particles. If pores and particles are monosized and have
the diametersl and D, respectively, we have:

0p =0 —a-—%— nely
P2 T o 2nr2

3. Microstructure models for pores R=d/D (15

in sintering
3.1. The models and the deviation analysis
The above supposed spherical pore is fully surrounde
by grains without pore openings. In the intermediate _
stage of sintering, the pores are connected with each - d
other through these openings and form a continuous R= D (16)
open network. With the help of the above pore model, B
the pores in the intermediate stage of sintering areR or R here represent the state of densification, the
still assumed to be spherical but with several openingslecrease oR means pore shrinkage and densification

and when there is a limited size distribution of pores
nd particles, the average sizes of whichcend D,
e ratioR is defined as:
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and the increase (ﬁ in contrast, represents a decreasewherel andl’ are the arc length at the radii df 2 and

of density. (d + D)/2. From Equation 1&)s=n?/x:
Let ns be the particle coordination number of a pore _ 1o
in space, the inter-particle edge length facing the pore g ~ (R )sm(n/ns) / 21)

bel, the inter-pore-particle area density pe(p” will |
be less than one in the intermediate stage butbe onein ' _
the final stage of sintering), then through the calculatiofcombining Equations 4, 17, 19 and 21 and the relation

(r/ng)t2

of the surface area, we have: d=2rp, we obtain:
nd?/p’ = nd? dysp’ sin(r /ng)Y/2 be
op = 1-(R+1)——————cos— | (22)
or "7 RD (7r/ng)L/2 2
ns = p'd?/1? (A7) Inthe intermediate stage of sintering, the coordination

. o . number,ns, is usually larger than 4 (e.g., in the close
For the final Stage of Slnterlng, Settly)g: 1, we have: packing of Spheres). To S|mp||fy the problem by as-
suming that at the intermediate stage of sintenmnds

_ 2,12
ns = wd/| (18) large enough for sir = x then the above equation can
be written as:
3.3. The compressive stress on the pore dysp' de
For a ‘spherical’ pore fully surrounded by grains, the %=TRD [1 —(R+1) cosz] (23)

compressive stress has been derived as can be seen in

Equation 14, but for a spherical pore with 0penings iNgq the final stage of sintering, pores may be surrounded
it, the compressive stress will be a little different: by less than 4 particles (e.qus = 1 for pores within a

2vs  Ndy grain,ns= 2 for pores at boundaries), apd— 1, we
op=pos—oi=p — — > (19)  have:
e  2mrg
] i 1/2
where oy, os a_nd o; are the to'gal compressive stress, 4, = 4ys 1-(R+ 1)% cos% (24)
the compressive stress resulting from surface tension RD (7 /ns) 2

and the tensile stress resulting from interface ten-
sion on the pore, respectively anglis the radius of Equations 22—24 gives the sintering stresses for pores
the pore. The decrease of the surface tension-relate@nd are the basic relations which determine the stability
compressive stress is reflected by the decreased poref a pore thermodynamically.
grain surface density, while that of the interface-related-
tensile stress is reflected by the decreased coordination . .
number and/or the grain edge length. 4. Densification equations

To get a concise relation betweepandR, the re- 4.1. Relation between densification rate and
lation betweer andd must be defined. Defining the the pore volume shrinkage rate
particle shape surrounding a pore of radiys-d/2 as -6t be the relative density of a sintering sample,
shown in Fig. 6 (treating the problem in two dimen- Vs @ndVe are the total volume, volume of solid phase
sion), and assuming that the particle is a part of a sectdi"d volume of pores in a unit weight, we have:
with its radial size of [D + d)/2 —d/2], and the cir-

cumferential size i© at the radius ofd + D)/2, we Vi=Vs+ Ve, Vr=1/p, Vp/Vi=1-p

. 25
have: S0, (25)
d/I = (d+D)/I"=D(R+1)/I dp/pdt = —dVr/ Vi dt = —(Ve/Vr) dVe/ Ve dt
= (R+D)lsingr/mi(=/m™  (20) — (1= p) dVe/ Vet (26)
D
<—'\ 4.2. For a single pore
The volume change rate of a pore equals the diffusion
flux of species (atoms or vacancies), and the flux is
- proportional to the effective diffusion coefficient and
’/27r/ﬂ D the driving force for the diffusion of the species, i.e.,
<< - the chemical potential gradieri¥,.. According to the
T~ diffusion equation by Herring [40] and later used by
other researchers [41-43]:
(d+D)/2 . |3 = (Deft/ QaKT) |V ] (27)

Figure 6 Schematics for the relation betweepl, R andns (for details where |J| is_ the abSOIUt? value of th_e spgcies flux
see text). through unit area,Der is the effective diffusion
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coefficient,2, is the diffusion volume of the species The above formula is the densification rate equation for
andkT has the usual meaning. compacts with mono-sized pores. For such compacts,

The chemical potential gradient in the above equatiorevery pore shrinks, or, more accurately, the valu®of
can be approximately expressed as the chemical potedecreases atthe same rate, so the valfeish constant
tial divided by the mean species diffusion distance, andn the intermediate stage of sintering and commdfly
this distance is assumed to be equal to the half of thean be assumed to be 1. In addition, for a homogeneous
sum of pore size and particle size, so: compact with mono-sized pores, at higher packing den-

sities and high dihedral angle:
V| = 2Ap/(d + D) (28)
1—[(Kp) 3@ = p)Y3 + 1] cos?e ~ 1 (36)

The chemical potentiah . equals the stress acted on 2
the porepp, multiplied by the diffusion volume of the giving the condition:
species:
do  48Qa0%(1 — p)"®Derr - ys

pdt — D3p¥3+ (1 - p)RkT

Ap = Qa0p (29) (37)

so whemg is large enough for the intermediate stage:

4.4. For compacts with very narrow pore
AyDeti 0’ 2 . L .
1J| = VFZTQEP [1 - cos%(R + D]ﬁ (30) size distribution
t + For a real powder compact or sintering body, there will

The relation of the pore volume change rate afids: D€ pore size distributions. When the pore size distribu-
tion is narrow and an average value of the size r&io,

dvp 1 2 62, can be used, substituting for the réglso Equation 32
V dt == %ndgﬂd 2] = _T”' (B1)  becomes:
. do  48p(1— p)QaDesry = o
approximately lefo’ = p, so the pore volume change — & = ——— = = a1 - (R+1) cos?e
rate can be expressed as: P D¥RY(R+ 1KT
(38)
dVp _ __48QapysDef [1 —(R+1) cos@] and the final densification equation under this condi-
Vp dit D3R%(R + 1)kT 2 tion will be approximately the same as Equation 35.

(32) For homogeneous compacts with high enough pack-
ing densitiesR < R, all pores tend to shrink, and the

Equation 32 is the densification equation for a single ; ©
pore whemg > 1. compacts will densify. FoR > R;, e.g., loosely but ho-

When d//V,dt =0, the pore is thermodynam- mogeneously packed superfine powders, densification

ically stable. There is then a criticaR value, will be impossible.
Re = (cos¢e/2)~1 —1, which is the criterion for the
pore stability. WherR < R, the pores tend to shrink. 4,5, For compacts of broad pore
size distributions

. For these powder compacts, where the valuR dlis-
4.3. For compacts of mono-sized pores tributes equivalently broad like the pore size, the above
Under a certain packing condition of particles, the sizeequaﬁonS can no longer be used. PoreR ef R tend
ratio, R, can be related to relative densities. For a com+q shrink, but pores oR > R; are thermodynamically

pact with mono-sized pores and particles, defing  staple or tend to grow. Let(R) be the frequency dis-
as the number of pores possessed by each particle (fgiipytion of R, there will be:

a simple cubic packingl = 1), we have:

J— Rmax
%er3 1 ) R= /Rm_ Rf(R)dR (39)
P = 1 D34 Kind® 3 "
57 D? + Kgrd 1+KR so the compressive stress on the sintering body will be:
SO
' _ Apys Roax e
R= (K,o)_l/s(l—p)l/s (34) Up = ——RD |:1— /Rmin (R+l)f(R)dRCOSE (40)
Combining Equations 26, 32 and 34, the densificatiorand:
equation can be obtained: dp  48Qup(1— p)Defi - ¥
_ a e S
dp  48Kp(1— p)Y3QaDerrys p dt D3R*(R+ 1)kT
pdt — D3[(Kp)¥3+ (1 — p)/3]kT Rimax de
p X 1—/ (R+1)f(R)dRcos? (41)
x {1 —[(Kp)™Y3@ - p)¥3 + 1] cos?e} n

The pores ofR > R; are thermodynamically stable,
(35) and though these pores will theoretically tend to grow,
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practically it was not evidently observed. So Equa-for sintering bodies of broad pore size distribution. As

tion 41 should probably be written as:

d_,O _ 48Qap(1 — p) Deiys
p dt D3R*(R+ 1)kT

R be
X [1— (R+1)f(R)cos—dR]
Rmin 2

-/RC f(R)dR

in

(42)

The above formula is a general equation for powder5' 1.1.

compacts.

4.6. Densification equations in the final
stage of sintering

With the help of the pore microstructure model for the

for powder compacts with broad pore size distributions,
the densification rate will be smaller than those of nar-
rower pore size distribution. In the extreme case, the
final stage of sintering may not be reached [35]. If it

can be reached, the broad pore size distribution will,
most probably, still exist [42—44].

5. Discussions

5.1. Pore shrinkage criteria

For pores in the intermediate

stage of sintering

The essential criterion for a pore to shrink, under the
conditionns > 1, has been givenin part2.2, i.e., in the
following simple equation:

R<Rc = (cosge/2) 1 — 1 (48)

final stage of sintering, and deriving the equation simi- o ] ] )
lar to those for the intermediate stage of sintering, fol-The equation is applicable for pores with large coordi-

lowing equations can be obtained:

de 48S2aDeff VS

Vpdt  D3RZ(R+ 1)KT

sin(r/ ns)l/2 Pe

X [l —(R+1)———— cos—} (43)

(/ng)/2 2
for a single pore with the criticaR value beingR. =
(cospe/2) X(m//ns)(sin /. /ns)~L — 1; and
do  48Kp(1 — p)*QaDefr - s
pdt — D3[(Kp)Y3+ (1 - p)3]kT

: {1 —[1+(Kp)™ - (1= p)*7]

or approximately lep ~ 1, and 1— p ~0:

singr/ng)*/2 ¢s} 4a)

dp ~ 48K #/3(1 — p)'/3QaDettys
pdt D3kT

; 1/2
X [1 — % cos%e] (45)

for mono-sized pores; and
d_,O ~ 4824(1 — p) Derys
pdt  D3R*(R+ 1KT
sinr/ns)"? e

nation numbers. When the coordination numbeis
not large enough, according to Equation 22:

(r/ng)¥/? < Pe

-1
7sin(n/ns)1/2 cos—) -1 (49)

R<R.= >

The criterion can be expressed with the coordination
number,ns. According to the relation betweeR and

ns (at high coordination number) from Equations 17,
20 and 48:

-2
n = 7p'(Re + 1)> = n,o’(cos%) (50)

It can be seen that for higher dihedral angle, the critical
coordination number will be larger, and poresigk ng

can shrink, and the driving force for the pore shrinkage
will be larger for larger critical coordination number.

5.1.2. For the final stage of sintering

Equation 49 can be used as the criteriorRofalue for

the final stage of sintering. At an extreme condition,

n=1, i.e., a pore within a grain, Equation 49 can be

satisfied at any cases. The criterion of the coordination
number(g), to simplify the problem, may approximate

as:
C ¢e -2
Ns<Ng=m cos? (51)

5.2. Sintering behavior of real
powder compacts
5.2.1. Effect of pore size distributions

for sintering bodies of very narrow pore size distribu- The densification of real powder compacts will be com-

tion; and
d_p _ 48(1— p)S2aDeirys 1_
pdt  D3RAR+ KT

sin@r/ns)"? e R

Re
(R+1) f(R)
len

(47)
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plicated as pore size is distributed in a certain range. If
all the pores are thermodynamically unstalite{ R.),

all pores will tend to shrink, but smaller ones will shrink
at higher rates than those of larger sizes (particles of
different sizes are assumed to be homogeneously dis-
tributed). Stress [25] may therefore arise from the dif-
ferent densification rates between locations of differ-
entR values. The densification process of bodies with
broader size distributions is usually slower than that



with narrower size distribution, as at the same com5.3. Comparison between the present

paction condition, compacts of broad size distribution densification equations and

usually contain a large amount of larger pores, probably Coble's equations

caused by aggregates and/or agglomerates. As compared to the Coble’s densification equations [12,
13], the present theory leads to consideration of the
following additional, but important items:

5.2.2. Effect of agglomerates

The existence of |arge agg|0merates” e.g., hundred(l) The effect of interface energy on densification was
times larger than the primary particles would cause vengonsidered, and the concept of a pore stability criterion
broad pore size distributions in the powder compactdntroduced, such that the effect of pore size distribution
[34, 35, 45]. The primary pores among the primary par-an be explained.

ticles are generally distributed in a limited range and (2) The densification rate is related to the pore size:
easy to e|iminate1 while the secondary pores amon@artide size ratiO, and pore size is not confined to Only
agg|0merates which are usua”y much |arger and aréhrink during densification. As a matter of faCt, pores
of very large coordination number are difficult to re- were repeatedly found to grow during the intermediate
move. During densification and grain growth, the ini- Stage of sintering [39, 49, 50]. If pores only shrank but
tially larger and thermodynamically stable pores arenot grew with grain growth, grain growth itself would
still difficult to remove because of the pore agg]omer-have led to densification. However, this is impOSSible.
ate effect led by grain growth, as has been reported by(3) Some equation derivation errors as can be iden-
Francois and Kingery [46] in an investigation of the sin-tified in Coble’s paper [12, 13] were avoided in the
tering behavior of U@. Studies by Zhao and Harmer Present paper. For example, Equation 8 in Ref. [12] is:
[47] show that these very large but isolated pores in the

final stage of sintering, though thermodynamically un-

stable and the pore agglomeration effect does not exist, P. =r?/I? ~ 10Dy ad(t; — t)/I° (a)

are still difficult to remove by kinetic reasons.

Another aspect of the effect of agglomerates on sinand the meanings of the symbols in the equation can be
tering is reflected by the inter-action between agglomfound in Ref. [12]. The equation was integrated with re-
erates and un-agglomerated matrix when the agglomespect to time under the assumption of fixéb= grain
ate content is low, which leads to the crack-like defectssize, heré was a constant), however, the relatlée=
in microstructures due to different shrinkage rates ofAt (note:| here became a function of time) was later

agglomeraters and the matrix [45, 48]. combined into the equation, and the following equation
derived:
5.2.3. Effect of green densities dP/dt = NDyag/I°kT = NDyag/AkTt  (b)

Poresinbodies of higher green density will have smaller

averageR value and thus the densification is favoredand Equation 3 in Ref. [13] was afterwards obtained:

by (a) having a larger driving force for pore shrinkage

and (b) having smaller diffusion distances. For sintering P = P — NDyaj[Int/to]/AKT (c)

bodies of different densities but where all pores are ther-

modynamically unstable, the effect of green densitiest is apparent that the above derivation involved some

will be diminished with the progress of sintering, but basic errors. The linear relation between porosity and

for bodies of lower green densities, some pores withthe logarithm of time will not be obtained if the assump-

high R value will become thermodynamically stable, tion of fixed! or alternatively the relatiol® = At were

and densification will be greatly affected [44, 47]. used throughout the whole equation derivation process.

(4) The present densification equations qualitatively

show that during heating with a certain rate a maximum

5.2.4. Effect of entrapped gas densification rate can be obtained and after that the den-
on densification in the sification decreases and will decrease to nearly zero at
final stage of sintering nearly theoretical densities. This basic sintering phe-

The effect of entrapped gas in pores in the final stage dfoMenon has been rep?eatedly_ observed in practice
sintering has been considered to impede densificatiofp1~53], however, Coble’s equations are not consistent
by decreasing the effective dihedral angle [33]. For the/Vith these observations.

present model, the gas pressug, can be directly in-

corporated into the sintering equation in the final stage Though the linear relation between densities and the
of sintering: logarithm of time are observed both in pressureless sin-

tering and hot-pressing, the explanation still lacks a
4y, # P.DR physical basis. Coble’s equation fitted the relation, but

op = s [1 — (R+1)cos—= — -2 } (52) would have not if derived strictly. As a matter of fact,
RD 2 Ays the phenomenological relation can hardly be related
to densification kinetics because the slope of the lin-
therefore the gas entrapped in pores will retard the derear relation is almost independent on the temperature,
sification process. both for pressureless sintering [54] and hot-pressing
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[22]. Besides, as discussed in Section 1, other empiriAs the external pressure is usually much larger than the
cal equations in addition to this linear relation betweenstress arising from surface tension or interface energy,
densities and the logarithm of time were also found toso Equation 56 can be further simplified to be:

be applicable in fitting the experimental data [18, 19,

25, 26]. From these points of view, efforts to fit the phe- dp 12(Kp)?3(1 — p)?3Q,Dest -
n_omgnologmal relation fromthethermodynamlc and/or ot DZ[(K,o)l/3 T - p)1/3]k_|_0efr (57)
kinetic basis are not meaningful.

So it can be seen that the new model is equivalent to the
lattice diffusion model (Nabarro-Herring creep model)

6.1. Densification equations [5_7], and moreover, th_e equation can bg directly u_sed
e . . either for the intermediate stage of sintering or the final

applied to hot-pressing stage of sintering. The equation shows that as the rel-

Densification models describing the hot-pressing Pr0%tive density approaches 100%, the densification rate

cess can be roughly divided into two categories: (aMiII be zero

material flow models: materials are regarded as fluids The densification equations (Equations 56 and 57)

and densification proceeds via viscous or plastic ﬂOWalso show that, for the densification process in hot press-

under the app'll'ed stress [22, 55]; .(b) T“at‘?”a' dlfoSIOr]i g, as the external pressure which exerts the compres-
models: densification proceeds via diffusion enhance

by the external pressure [23, 56]. Diffusional models ive stress on pores is usually much larger than that by

: : .. either surface or interface tension, the effect of pore
were proposed to be either grain boundary diffusion P

controlled (Coble creep model) or lattice diffusion Con_size distribution and the dihedral angle are negligible.
trolled (Nabarro-Herring creep model) [57]. The use OfTherefore parameters such as surface and interface en-

the pressureless sintering equations by Coble [12, 1:§rgy can be neglected and the phenomenological equa-

for the sintering process in hot-pressing is not possible ons, e.g., material flow equations, are also applicable
. 3 to the sintering process of hot-pressing [22].

Another disadvantages of the Coble proposed modeP gp P g[22]

is that, in final stage of sintering, as the pore radius

decreases, and the densification rate will reciprocally

increase, and the densification rate will become infi-"-

nite at full densification. The spherical pore model pre- . _Phase sintering

sented here by the present author can be directly applieloiquid phase ;intering_ has_ been investigated much
to the densification process for hot-pressing, Simpl))ongerthan solid state sintering [58, 59]. Generally ma-

by adding the effective stressey, from the external terial flow mechanisms on macroscopical level were
applied pressure into Equation 22 and the foIIowingused for the description of the densification behaviour

related equations. The relation between the effectivdl! 19uid phase sintering. However, itis believed that the
stressoer and the external applied pressufy, will material diffusion mechanism on microstructural level

be simply assumed to be: could be _ajso applied for qugid phase sintering. Un(j_er
the conditions that the particle rearrangement arising
from the capillary force were not considered, the model
=P,1-p)/4 53 e . e
Oeff a1 =r)/ (53) proposed in this paper for solid state sintering is tried
for liquid phase sintering as follows.

6. Applications of the densification equations

2. Densification applied to liquid

for uniaxial hot pressing, here/4 stands for the ratio
between the maximum section areg4#d?) to the

surface arear(d?) of a particle; and L. ]
an(d) P 6.2.1. Liquid can wet both particle

interface and surface
oett = Pe(1—p) (54) To wet the interface and surface at the same time, the
gontent of liquid phase should be high enough, and, the
condition ofy + yis < ¥s and 24s < yss Should be sat-
isfied simultaneously, heie, vis, vs, vssare the surface
oo RD tension of liquid, interface tension between solid and
} (55) liquid phases, surface tension of solid and the interface
4ysp tension between solid particles. Under the condition the

for isostatical hot pressing. So the total compressiv
stress on a pore will be:

4ysP
op =
P”RD

[l— (R+ 1)cos% +

Combining Equations 35 and 55, the densification raté'qu'd .phasedcan form ﬁ crc])ntlnu?us nethrk n t?ree d"f

can be written as Mension and cover all the surfaces and interfaces o

solid particles. Therefore in this case the dihedral angle

dp 48K p2(1 — p)32Deirys is 180, the driving force for densification is the surface

ot = DI[(Kp)P + (L= VKT tension of liquid and no resistance is present for pore
o —p

shrink, so Equation 38 can be modified as:

. —1/371 _ \1/3 _ _
x {1 [(Kp) 31— p)"° +1] do _ 48/)(1_2 P)aDeiin [1— (R+ 1) Cosdg]
p dt D3RR+ 1)KT 2
RD _
8 COS% n Ocff } (56) _ 48,0(1_2 P_)QaDeff,I)/l (58)
2 Ay D3R (R+ 1)kT
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here Deg, is the diffusion coefficiency of species in  3) Densification equations for the intermediate and
liquid phase. In this case all pores can be removed thefinal stages of solid state sintering are derived by relat-
modynamically. ing densification to pore to particle size ratio, and used
for the understanding of the densification process. The
criterion for pore shrinkage was obtained.

4) The derived equations can be used for the expla-

When there is appropriate amount of liquid phase anq]&tion of the effect of pore size distribution, agglomer-

the condition ofy; + y1s > ys and 235 < yss can be sat- . . .
o o / ) ation properties, the density of the green compacts and
isfied, liquid phase can only spread into the interface 'on propert "y 9 P

) L . entrapped gas in the final stage on sintering.
k?et\{veen_partlcles, all SO“.d interface were vyetted with 5) The derived densification equations can be eas-
liquid while surface remain unwetted. In this case the.

driving force for densification is the surface tension ofIIy developed for sintering process of hot-pressing or

. . . : . -_isostatic-hot-pressing. The results show that the densi-
solid phase while the resistance is the interface tensio b 9

between liquid and solid phases, there will be the fol—ﬁ]csggln equations for hot-pressing fit the lattice creep

lowing densification equation: 6) Efforts were made to apply the densification equa-
do 480(1— p)QaDefrivs tions for solid state sintering to liquid phase sintering

6.2.2. Liquid can wet only particle interface

- = — [1 —(R+1) cosd’e’ﬂ under several different wetting conditions between lig-
p dt D3R (R+ 1)kT 2

(59)
here¢e ¢ is the dihedral angle between solid surface

uid phase and solid particle phase.

and liquid interface. As in this case two liquid-solid References

interface tensions are balanced by solid surface tension%-
the dihedral angle will be expressed as: '

¢e,s| _ ﬁ
2 Vs

In the above two cases the surface and/or interface carzl1 '
be well wetted. Considering the much higher diffusion
ability in liquid than in solids (this is approximately 5
equivalent to the concept of “solution-precipitation”
process [59] used in liquid phase sintering), the den-
sification process will be accelerated as compared toy.
solid state sintering through the process of mass trans-
port via liquid phase, and the sintering temperature can
therefore be lowered significantly.

cos (60) 3.

6.2.3. Liquid phase can wet neither %

surface nor interface 1
In this case there is no capillary force of the liquid

phase which can act as the driving force for particle11.

rearrangement. The liquid phase cannot act as the dif-
fusion path of solid species, in contrast it may act as th
impedance for the diffusion of solid species. Therefore,,

is present, the densification is believed to be greatly re-
tarded. For example, when about 1 wt % sodium oxide
were added into Y-TZP powder, the densification of thet
materials were greatly affected [60]. 17

7. Conclusion

termined by a mathematical relation of the curvature
of the pore-particle surface, coordination number, and
dihedral angle. The stability of a space pore can be ap-

proximately determined by a spherical pore model, andg.

has been found to be related to the dihedral angle, par-
ticle coordination number, and the size ratio of the pore

to its surrounding particles. L
2) Based on the spherical pore model, pore mi-

for the intermediate and final stages of sintering.
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